Sustained Land Imaging Architecture Study Briefing To 2014 HyspIRI Product Symposium

Del Jenstrom Jeff Masek

NASA/GSFC June 4, 2014

Land Imaging AST Charge, Process, & Membership

Land Imaging AST Charge (September 2013)

- Define a Sustainable Land Imaging (SLI) system delivering global land-imaging multispectral and thermal infrared information for a 20-year period starting in 2018
- Provide options which consider various weightings of near-term capability, continuity/gap risk mitigation, technology infusion over the system's lifetime, and cost
- Consider refined capabilities requested by the user communities
- Include consideration of new measurement approaches, as well as potential international and private sector partnerships

AST Study Process

- Establish study trade space via expert knowledge, intensive AST discussions, and RFI responses
- Trade space is explored via several design cycles, and adjusted through each
- Appealing architectures that are likely to satisfy budget constraints are further refined and assessed

AST Membership

 Representatives from NASA/GSFC, NASA/LaRC, NASA/ARC, JPL, USGS, JHU/APL, Aerospace, and MIT/LL

Three Basic Study Tenets for the Program

Sustainability

 The LI program should provide the data products for the long haul, without extraordinary infusions of funds, within the budget guidance provided.

Continuity

 The LI program should continue the long term Landsat data record. This does not necessarily mean the imagery per se, but the *usable products* that define the utility of the data record.

Reliability

 The LI program should be robust and not susceptible to single point failures. The loss of a single satellite or instrument on orbit should not cripple the program or significantly impact users.

NASA Land Imaging Budget

 The President's FY 2014 Budget Submittal for NASA's Sustained Land Imaging activities, released in April 2013

\$K	FY 14	FY 15	FY 16	FY 17	FY 18	FY 19
Land Imaging	30,000	84,000	94,800	117,900	117,900	-

 Per ESD direction assume for planning purposes: \$120M in FY19 as the base year and inflation adjust in FY20 and beyond

9/18/13

AST Study Timeline & Milestones

Architecture Assessment Process Overview

- AST has attempted to map the prime study tenets of Sustainability,
 Continuity, and Reliability into our metrics and assessment process
- Satisfaction of user community needs is reflected by comparison to historical Landsat capabilities
 - Secondary metrics are being assessed to address the degree to which architectures satisfy other user desires
- AST process has evolved into a phased sequence to enable first phase assessment of many architectures followed by more detailed assessment of down-selected subsets
- Technical flight system concepts are first mapped to select business models to establish mission cost building blocks
- Missions are implemented as frequently as possible, constrained by the program budget profile
- Architecture performance as measured by availability and other metrics are then assessed

Assessment of Enhancements

- AST charged to also consider refined capabilities requested by the user communities and new measurement approaches
- Includes consideration of
 - More frequent revisit rates
 - More spectral bands
 - Finer spatial resolution
 - Hyperspectral
 - Other modalities (SAR/Lidar)
- Benefit and risk assessment of hyperspectral imaging being investigated by AST team consisting of JPL, GSFC, and MIT/LL in parallel to larger continuity architecture assessments
- Assessing and comparing AVIRIS to Landsat 8 imagery

AST Observations (1 of 2)

- The future Sustainable Land Imaging program should continue to provide the <u>backbone</u> capability historically played by Landsat
 - There is currently no comparable program to Landsat: it is the reference standard for land imaging relied on by other programs
 - Sentinel 2 may become similarly capable in reflective bands, but is yet unproven
 - Landsat sets the standard for data usability; this should continue
 - Data should be ~co-temporal, coregistered, calibrated & full-spectrum:
 VIS-NIR-SWIR-TIR
 - Data should have routine global & synoptic coverage
 - Data needs to be acquired from a sun-synchronous vantage point
 - Land Imaging should strive to only employ mature technologies operationally
 - Demonstration of promising new technology should be done "off line"
 - Science and operational users expect and require stability
 - New approaches should enable continuation of historical record

AST Observations (2 of 2)

- BOL performance of Landsat 8 is excellent
 - Some aspects of OLI performance (e.g. SNR) may exceed the needs of many users
 - Landsat-8 (including TIRS) is likely to continue well beyond its design life
 - Possibility of random failure increases slowly but monotonically
- For a significant portion of Landsat history the repeat time has been 8 days, hence this most closely represents "continuity" to the user community
- A launch failure may occur, a random failure on orbit may occur
 - The system must be robust to a single failure
- The SLI program budget profile is the dominant driver of the architecture trade space
- AST has identified viable architectures within the constraints of the study
 - However, those approaches that satisfy the value metrics have their own unique drawbacks and risks
- AST results will inform initial SLI Program direction
 - Determine feasibility of sufficiently satisfying user needs within sustainable program
 - Identify promising architectures
 - Enable near-term decisions for initial program direction and investments
 - Ongoing studies and technology investments by the SLI program will be required to refine the program plan

AST Study Timeline & Milestones

AST Perspectives on Hyperspectral Data

HyspIRI Symposium, June 4 2014

Factors to Consider

- SLI Science and User Needs
 - Which SLI applications require hyperspectral data
 - Which would benefit from hyperspectral data?
 - Ability to use hyperspectral data to provide Landsat data products
- Technology Readiness
 - Can a spectrometer meet core Landsat-8 requirements with low risk in the near-term?
- Ground System Impacts

How Are User Needs Assessed?

- USGS National Land Imaging Requirements (NLIR)
 - elicited 151 distinct, representative user applications where Landsat data is used routinely to provide consistent services or informational products
- Landsat Science Team Input
 - Definition of Landsat Continuity (white paper)
 - Parametric studies on data quality
 - Role of Sentinel-2 in SLI Program (white paper)
 - Role of Hyperspectral data in SLI (email query)
- NRC Report "Landsat and Beyond"
- NASA Science needs

AST Findings: User Needs

- The SLI Program should be designed to support the broad range of national and global land monitoring capabilities, and provide continuity with the historic Landsat archive
- The current Landsat user community places the highest priority on increasing revisit frequency
 - Improved ability to defeat cloud cover and use "every clear pixel"
 - Critical for mapping of land cover and vegetation change in cloudy areas, including tropics
 - Intra-annual spectral changes (e.g. phenology) seen as key for mapping vegetation type and condition
 - More frequent revisit advances hydrological and cryospheric applications, where conditions change daily to weekly
- Hyperspectral data are critical for specific applications
 - Detailed mapping of vegetation composition (e.g. species/community level)
 - Biogeochemistry & Photosynthetic rate controls
 - In general, hyperspectral data offer a potential for physically-based modeling of ecosystem function, and ecosystem responses to disturbance, management, and climate change

Imaging Spectroscopy Technology

- Imaging spectroscopy could provide core multispectral data for SLI
 - In theory, aggregating 10 nm bands from current imaging spectrometer designs should meet OLI SNR requirements
 - A larger aperture may be required to compensate for grating efficiency losses
 - Spectrometers that only meet aggregated L8 SNR requirements may not provide adequate SNR at 10nm for useful hyperspectral applications
- AST has concerns about *near-term* ability to implement a wide FOV spectrometer that meets all Landsat-8 performance requirements
 - Stray light due to diffraction grating limitations
 - Spatial
 - Spectral out-of-band
 - Spectral band edge locations and extent for narrow SLI bands
 - Potential for increased polarization sensitivities with a grating
- These risks are not seen as permanent mitigation options include:
 - Additional design & testing using laboratory and airborne systems
 - Tech demo missions, perhaps in cooperation with SLI
 - HyspIRI mission implementation

Preliminary Conclusions

- AST is not recommending requiring hyperspectral data for a near-term ("Landsat-9") mission
 - Using a spectrometer to obtain L8-type multispectral data remains a possibility under some near-term options
- AST is considering options for integrating imaging spectroscopy into future SLI missions
 - Although hyperspectral data are not seen as an immediate requirement, user experience with upcoming missions (e.g. ENMAP, HyspIRI) may accelerate demand for these data
 - Spectrometers may prove to be the most cost-effective approach for multispectral observations
 - Tech demo (ESPA-class) missions are an attractive option
 - AST is an advocate for laboratory and space demonstration of a compliant, perhaps narrower FOV hyperspectral capability
 - Space demonstration would enable data assessment by broad user community
 - Small spectrometer could provide geographic sampling (rather than global coverage) with 30 meter resolution, while demonstrating consistent radiometry across FOV
 - Could provide substantial science benefits while demonstrating ability to meet Landsat-8 data quality requirements
 - Possible long-term migration to primary hyperspectral capability for SLI

Feedback Desired

The AST is interested in feedback from the hyperspectral science community, including the HyspIRI science team:

- General feedback on this presentation and the SLI program in general:
 - Views on the role of hyperspectral data within the context of SLI and Landsat Continuity
 - Views on the technical challenges presented here
- Thoughts on how best to demonstrate hyperspectral capabilities to mitigate SLI risk
 - Is there interest in a small, secondary hyperspectral payload in the "Landsat-9" or "Landsat-10" era?
 - Early demonstration of wide-FOV, 30m spectroscopy
 - Science utility of a systematic global sample?
 - AST is recommending small secondary payloads to demonstrate technology
 - Would likely require funds external to SLI budget